Release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

109 Citas (Scopus)

Resumen

The antibacterial property of thyme essential oil due to different volatile compounds, has been well documented in the literature. To overcome the high volatility of essential oil components, encapsulation has emerged as a new alternative. In this work, chitosan and thyme essential oil-loaded chitosan nanoparticles (TEO-CSNPs) and nanocapsules (TEO-CSNCs) were prepared by nanoprecipitation and nanoencapsulation, respectively. The morphology, encapsulation efficiency, release kinetics, and inhibitory activity were evaluated. Average size of nanocapsules (9.1 ± 1.6 nm) was slightly higher than nanoparticles (6.4 ± 0.5 nm). The percentage encapsulation of thymol and carvacrol, more than 68%, was similar for nanoparticles and nanocapsules. However, thymol and carvacrol release time from TEO-CSNPs was faster compared to TEO-CSNCs. The release kinetics data were fitted to three analytical kinetic models with no statistical differences among them. The inhibitory activity was higher for nanoparticles than for nanocapsules when tested against six foodborne bacteria. The inhibitory effect of TEO-CSNPs was the highest against Staphylococcus aureus (inhibition halo 4.3 cm) and for TEO-CSNCs it was against Bacillus cereus (inhibition halo 1.9 cm).

Idioma originalInglés
Páginas (desde-hasta)409-414
Número de páginas6
PublicaciónInternational Journal of Biological Macromolecules
Volumen103
DOI
EstadoPublicada - oct. 2017

Huella

Profundice en los temas de investigación de 'Release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria'. En conjunto forman una huella única.

Citar esto