Effect of added pharmatose DCL11 on the sustained-release of metronidazole from methocel K4M and carbopol 971P NF floating matrices

E. Cedillo-Ramírez, L. Villafuerte-Robles, A. Hernández-León

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

17 Citas (Scopus)

Resumen

In vitro dissolution of metronidazole from sustained release floating tablets was studied with varied proportions of sodium bicarbonate (SB) and Pharmatose DCL 11. Two polymers with different hydration characteristics, Methocel K4M and Carbopol 971P NF, were used to formulate the matrices. The variables studied include the matrices' release profile, hydration volume, and floating behavior. All Methocel matrices floated more than 8 h with SB proportions up to 24%, while Carbopol matrices floated more than 8 h with SB proportions only up to 12%. Matrices' hydration increased with time until reaching a peak and declining thereafter. Methocel matrices showed greater hydration volumes and greater drug dissolution compared to Carbopol matrices. After adding increasing quantities of Pharmatose to matrices containing 12% SB, hydration volume decreased while dissolution increased. These results were attributed to water-filled pores that formed following the Pharmatose dissolution and to reduced polymer proportions. Carbopol matrices showed greater susceptibility to the added Pharmatose, becoming more erodible and releasing higher quantities of metronidazole. The greater Carbopol susceptibility to added Pharmatose was attributed to its faster hydration. Methocel matrices hydrate rapidly only at the surface, delaying hydration and Pharmatose dissolution.

Idioma originalInglés
Páginas (desde-hasta)955-965
Número de páginas11
PublicaciónDrug Development and Industrial Pharmacy
Volumen32
N.º8
DOI
EstadoPublicada - 1 sep. 2006

Huella

Profundice en los temas de investigación de 'Effect of added pharmatose DCL11 on the sustained-release of metronidazole from methocel K4M and carbopol 971P NF floating matrices'. En conjunto forman una huella única.

Citar esto