Effect of added pharmatose DCL11 on the sustained-release of metronidazole from methocel K4M and carbopol 971P NF floating matrices

E. Cedillo-Ramírez, L. Villafuerte-Robles, A. Hernández-León

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

In vitro dissolution of metronidazole from sustained release floating tablets was studied with varied proportions of sodium bicarbonate (SB) and Pharmatose DCL 11. Two polymers with different hydration characteristics, Methocel K4M and Carbopol 971P NF, were used to formulate the matrices. The variables studied include the matrices' release profile, hydration volume, and floating behavior. All Methocel matrices floated more than 8 h with SB proportions up to 24%, while Carbopol matrices floated more than 8 h with SB proportions only up to 12%. Matrices' hydration increased with time until reaching a peak and declining thereafter. Methocel matrices showed greater hydration volumes and greater drug dissolution compared to Carbopol matrices. After adding increasing quantities of Pharmatose to matrices containing 12% SB, hydration volume decreased while dissolution increased. These results were attributed to water-filled pores that formed following the Pharmatose dissolution and to reduced polymer proportions. Carbopol matrices showed greater susceptibility to the added Pharmatose, becoming more erodible and releasing higher quantities of metronidazole. The greater Carbopol susceptibility to added Pharmatose was attributed to its faster hydration. Methocel matrices hydrate rapidly only at the surface, delaying hydration and Pharmatose dissolution.

Original languageEnglish
Pages (from-to)955-965
Number of pages11
JournalDrug Development and Industrial Pharmacy
Volume32
Issue number8
DOIs
StatePublished - 1 Sep 2006

Keywords

  • Gastric retention
  • Matrices hydration
  • Matrix erosion
  • Sodium bicarbonate
  • Sustained-release parameters

Fingerprint

Dive into the research topics of 'Effect of added pharmatose DCL11 on the sustained-release of metronidazole from methocel K4M and carbopol 971P NF floating matrices'. Together they form a unique fingerprint.

Cite this