Physiological and Biochemical Responses of Bicarbonate Supplementation on Biomass and Lipid Content of Green Algae Scenedesmus sp. BHU1 Isolated From Wastewater for Renewable Biofuel Feedstock

Rahul Prasad Singh, Priya Yadav, Ajay Kumar, Abeer Hashem, Al Bandari Fahad Al-Arjani, Elsayed Fathi Abd_Allah, Angélica Rodríguez Dorantes, Rajan Kumar Gupta

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

In the present study, different microalgae were isolated from wastewater environment and evaluated for higher growth and lipid accumulation. The growth adaptability of all the isolated microalgae were tested for carbon source with supplementation of sodium bicarbonate in BG-11 N+ medium. Further based on the uptake rate of sodium bicarbonate and growth behavior, microalgal strains were selected for biofuel feedstock. During the study, growth parameters of all the isolates were screened after supplementation with various carbon sources, in which strain Scenedesmus sp. BHU1 was found highly effective among all. The efficacy of Scenedesmus sp. BHU1 strain under different sodium bicarbonate (4–20 mM) concentration, in which higher growth 1.4 times greater than control was observed at the concentration 12 mM sodium bicarbonate. In addition, total chlorophyll content (Chl-a + Chl-b), chlorophyll fluorescence (Fv/Fm, Y(II), ETR max, and NPQmax), and biomass productivity were found to be 11.514 μg/ml, 0.673, 0.675, and 31.167 μmol electrons m−2 s−1, 1.399, 59.167 mg/L/day, respectively, at the 12 mM sodium bicarbonate. However, under optimum sodium bicarbonate supplementation, 56.920% carbohydrate and 34.693% lipid content were accumulated, which showed potential of sodium bicarbonate supplementation in renewable biofuel feedstock by using Scenedesmus sp. BHU1 strain.

Original languageEnglish
Article number839800
JournalFrontiers in Microbiology
Volume13
DOIs
StatePublished - 29 Mar 2022

Keywords

  • Scenedesmussp
  • biofuel
  • chlorophyll fluorescence
  • molecular analysis
  • scanning electron microscopy
  • sodium bicarbonate

Fingerprint

Dive into the research topics of 'Physiological and Biochemical Responses of Bicarbonate Supplementation on Biomass and Lipid Content of Green Algae Scenedesmus sp. BHU1 Isolated From Wastewater for Renewable Biofuel Feedstock'. Together they form a unique fingerprint.

Cite this