Fabrication of metal-organic frameworks with trimesic linkers for europium adsorption and recovery from aqueous solutions

Roxana Paz, Herlys Viltres, Nishesh Kumar Gupta, Carolina Leyva, Rushikesh P. Dhavale, Hyung Ho Park, Adolfo Romero-Galarza, Amin Reza Rajabzadeh, Seshasai Srinivasan

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

This work reports on the effective sequestration of Eu(III) ions from aqueous solutions using three types of metal-organic frameworks (MOFs) constructed from benzene-1,3,5-tricarboxylic acid (H3BTC) linker and Ca2+, Cu2+, or Al3+ metal nodes. The MOFs possessed an exceptionally high Eu adsorption capacity of 635 (91% removal), 642 (92% removal), and 628 mg g−1 (90% removal) for Cu-BTC, Ca-BTC, and Al-BTC, respectively, at pH 7 for an initial Eu concentration of 350 mg L−1. The MOFs were hydrolytically stable and possessed a high Eu adsorption capacity in a wide pH range of 4–8. While the pseudo-second-order model explained the adsorption kinetics, the adsorption process followed the Langmuir-Freundlich isotherms. The analysis confirmed that the Eu adsorption process was governed by chemical interactions between the carboxylic acid/carboxylate group and Eu(III) ions via complexation or ion exchange mechanism. A multi-metal adsorption study confirmed a preferential adsorption behaviour for trivalent lanthanides over divalent cations due to comparatively stronger interactions between Ln3+ ions and carboxylate groups. The XPS findings suggested Eu−OOC and Eu(OH)3 formed over the MOFs' surface after Eu adsorption. These MOFs were effectively regenerated for multiple cycles using 0.1 mol L−1 EDTA solution. Thus, the study demonstrated low-cost MOFs with superior regeneration capabilities for the capture of Eu(III) ions from waste solutions.

Original languageEnglish
Article number110084
JournalJournal of Environmental Chemical Engineering
Volume11
Issue number3
DOIs
StatePublished - Jun 2023
Externally publishedYes

Keywords

  • Adsorption
  • Europium
  • Mechanism
  • Metal-organic frameworks
  • Regeneration

Fingerprint

Dive into the research topics of 'Fabrication of metal-organic frameworks with trimesic linkers for europium adsorption and recovery from aqueous solutions'. Together they form a unique fingerprint.

Cite this