Dynamics and stabilization of bright soliton stripes in the hyperbolic-dispersion nonlinear Schrödinger equation

L. A. Cisneros-Ake, R. Carretero-González, P. G. Kevrekidis, B. A. Malomed

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

6 Citas (Scopus)

Resumen

We consider the dynamics and stability of bright soliton stripes in the two-dimensional nonlinear Schrödinger equation with hyperbolic dispersion, under the action of transverse perturbations. We start by discussing a recently proposed adiabatic-invariant approximation for transverse instabilities and its limitations in the bright soliton case. We then focus on a variational approximation used to reduce the dynamics of the bright-soliton stripe to effective equations of motion for its transverse shift. The reduction allows us to address the stripe's snaking instability, which is inherently present in the system, and follow the ensuing spatiotemporal undulation dynamics. Further, introducing a channel-shaped potential, we show that the instabilities (not only flexural, but also those of the necking type) can be attenuated, up to the point of complete stabilization of the soliton stripe.

Idioma originalInglés
Páginas (desde-hasta)268-281
Número de páginas14
PublicaciónCommunications in Nonlinear Science and Numerical Simulation
Volumen74
DOI
EstadoPublicada - 30 jul 2019

Huella

Profundice en los temas de investigación de 'Dynamics and stabilization of bright soliton stripes in the hyperbolic-dispersion nonlinear Schrödinger equation'. En conjunto forman una huella única.

Citar esto