Degradation of Hydroquinone Coupled with Energy Generation through Microbial Fuel Cells Energized by Organic Waste

Tasnim Aisya Mahmuelee Torlaema, Mohamad Nasir Mohamad Ibrahim, Akil Ahmad, Claudia Guerrero-Barajas, Mohammed B. Alshammari, Sang Eun Oh, Fida Hussain

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

12 Citas (Scopus)

Resumen

Microbial fuel cell (MFC) technology has captured the scientific community’s attention in recent years owing to its ability to directly transform organic waste into electricity through electrochemical processes. Currently, MFC systems faces a number of barriers, with one of the most significant being the lack of organic substrate to provide enough energy for bacterial growth and activity. In the current work, rotten rice was utilized as an organic substrate to boost bacterial activity to produce more energy and break down the organic pollutant hydroquinone in an effort to improve the performance of MFCs. There are only a few studies that considered the waste as an organic substrate and simultaneously degraded the organic pollutant vis-à-vis MFCs. The oxidation of glucose derived from rotten rice generated electrons that were transported to the anode surface and subsequently flowed through an external circuit to the cathode, where they were used to degrade the organic pollutant hydroquinone. The results were consistent with the MFC operation, where the 168-mV voltage was generated over the course of 29 days with a 1000 Ω external resistance. The maximum power and current densities were 1.068 mW/m2 and 123.684 mA/m2, respectively. The hydroquinone degradation was of 68%. For the degradation of organic pollutants and the production of energy, conductive pili-type bacteria such as Lacticaseibacillus, Pediococcus acidilactici and Secundilactobacillus silagincola species were identified during biological characterization. Future recommendations and concluding remarks are also included.

Idioma originalInglés
Número de artículo2099
PublicaciónProcesses
Volumen10
N.º10
DOI
EstadoPublicada - oct. 2022

Huella

Profundice en los temas de investigación de 'Degradation of Hydroquinone Coupled with Energy Generation through Microbial Fuel Cells Energized by Organic Waste'. En conjunto forman una huella única.

Citar esto