Chemical synthesis and optical, structural, and surface characterization of InP-In2O3 quantum dots

D. A. Granada-Ramirez, J. S. Arias-Cerón, M. Pérez-González, J. P. Luna-Arias, A. Cruz-Orea, P. Rodríguez-Fragoso, J. L. Herrera-Pérez, M. L. Gómez-Herrera, S. A. Tomás, F. Vázquez-Hernández, A. A. Durán-Ledezma, J. G. Mendoza-Alvarez

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

11 Citas (Scopus)

Resumen

InP-In2O3 colloidal quantum dots (QDs) synthesized by a single-step chemical method without injection of hot precursors (one-pot) were investigated. Specifically, the effect of the tris(trimethylsilyl)phosphine, P(TMS)3, precursor concentration on the QDs properties was studied to effectively control the size and shape of the samples with a minimum size dispersion. The effect of the P(TMS)3 precursor concentration on the optical, structural, chemical surface, and electronic properties of InP-In2O3 QDs is discussed. The absorption spectra of InP-In2O3 colloids, obtained by both UV–Vis spectrophotometry and photoacoustic spectroscopy, showed a red-shift in the high-energy regime as the concentration of the P(TMS)3 increased. In addition, these results were used to determine the band-gap energy of the InP-In2O3 nanoparticles, which changed between 2.0 and 2.9 eV. This was confirmed by Photoluminescence spectroscopy, where a broad-band emission displayed from 2.0 to 2.9 eV is associated with the excitonic transition of the InP and In2O3 QDs. In2O3 and InP QDs with diameters ranging approximately from 8 to 10 nm and 6 to 9 nm were respectively found by HR-TEM. The formation of the InP and In2O3 phases was confirmed by X-ray Photoelectron Spectroscopy.

Idioma originalInglés
Número de artículo147294
PublicaciónApplied Surface Science
Volumen530
DOI
EstadoPublicada - 15 nov. 2020

Huella

Profundice en los temas de investigación de 'Chemical synthesis and optical, structural, and surface characterization of InP-In2O3 quantum dots'. En conjunto forman una huella única.

Citar esto