Atomistic simulation of cholesterol effects on miscibility of saturated and unsaturated phospholipids: Implications for liquid-ordered/liquid-disordered phase coexistence

Jason De Joannis, Patrick S. Coppock, Fuchang Yin, Makoto Mori, Absalom Zamorano, James T. Kindt

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

47 Citas (Scopus)

Resumen

Mixed MD/MC simulation at fixed difference in chemical potential (Δμ) between two lipid types provides a computational indicator of the relative affinities of the two lipids for different environments. Applying this technique to ternary DPPC/DOPC/cholesterol bilayers yields a DPPC/DOPC ratio that increases with increasing cholesterol content at fixed Δμ, consistent with the known enrichment of DPPC and cholesterol-rich in liquid-ordered phase domains in the fluid-fluid coexistence region of the ternary phase diagram. Comparison of the cholesterol-dependence of PC compositions at constant Δμ with experimentally measured coexistence tie line end point compositions affords a direct test of the faithfulness of the atomistic model to experimental phase behavior. DPPC/DOPC ratios show little or no dependence on cholesterol content at or below 16% cholesterol in the DOPC-rich region of the composition diagram, indicating cooperativity in the favorable interaction between DPPC and cholesterol. The relative affinity of DPPC and DOPC for high cholesterol bilayer environments in simulations is explicitly shown to depend on the degree of cholesterol alignment with the bilayer normal, suggesting that a source of the cooperativity is the composition dependence of cholesterol tilt angle distributions.

Idioma originalInglés
Páginas (desde-hasta)3625-3634
Número de páginas10
PublicaciónJournal of the American Chemical Society
Volumen133
N.º10
DOI
EstadoPublicada - 16 mar. 2011

Huella

Profundice en los temas de investigación de 'Atomistic simulation of cholesterol effects on miscibility of saturated and unsaturated phospholipids: Implications for liquid-ordered/liquid-disordered phase coexistence'. En conjunto forman una huella única.

Citar esto