Analysis of Hole Transport Layer and Electron Transport Layer Materials in the Efficiency Improvement of Sb2(Se1−xSx)3 Solar Cell

Miriam M. Nicolás-Marín, Osvaldo Vigil-Galán, Fernando Ayala-Mato, Maykel Courel

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

5 Citas (Scopus)

Resumen

Sb2(Se1−xSx)3 compounds have been regarded as an excellent absorber in thin film solar cells processing. At present, the best efficiency reported in these chalcogenides of antimony corresponds to FTO/CdS/Sb2(Se1−xSx)3/Spiro-OMeTAD/Au structure with 10.5%. Herein, a comparative study on the Sb2(Se1−xSx)3 solar cell performance with different electron transport layers (ETLs) and hole transport layers (HTLs) is carried out. The main photovoltaic parameters such as short-circuit current density, open-circuit voltage, fill factor, power conversion efficiency, and external quantum efficiency of devices with n–i–p structures are analyzed from a theoretical point of view. The impact of different ETL, HTL, and absorber thicknesses as well as the influence of Sb2(Se1−xSx)3 bulk and interface defects on the final efficiency of the device is investigated. After the optimization of the above physical parameters, it is demonstrated that with the FTO/ETL/Sb2(Se1−xSx)3/HTL/Au proposed structure, efficiency can be improved from 10% to 16%. In particular, it is found that Cd0.6Zn0.4S and ZnO are better candidates for ETL, while the use of NiO and Cu2O as HTL results in increased efficiencies in comparison to the traditional Spiro-OMeTAD.

Idioma originalInglés
Número de artículo2200342
Publicaciónphysica status solidi (b)
Volumen260
N.º1
DOI
EstadoPublicada - ene. 2023

Huella

Profundice en los temas de investigación de 'Analysis of Hole Transport Layer and Electron Transport Layer Materials in the Efficiency Improvement of Sb2(Se1−xSx)3 Solar Cell'. En conjunto forman una huella única.

Citar esto