Turbulent flow over a facing step at several Reynolds numbers

Jose A. Jimenez-Bernal, Adan Juarez-Montalvo, Claudia C. Del Gutierrez-Torres, Juan G. Barbosa Saldaña, Luis F. Rodriguez-Jimenez

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

An experimental study was performed over forward facing step (FFS). It was located within a transparent rectangular acrylic channel (1.4 m in length, 0.1 m in width and 0.02 m in height). The step is 0.01 m in height and 0.1 m in width, and was located 0.7 m downstream (fully developed region); a spanwise aspect ratio, w/h = 10 was used. The experiments were carried out using particle image velocimetry (PIV), which is a non intrusive experimental technique. The experimental water flow conditions include three Reynolds numbers based on the step height, Reh = 1124, 1404 and 1685. These flow conditions correspond to turbulent flow. Measurements were carried out in two zones; zone A begins at x = 8 cm (measured from the step base), and zone B starts at x = 0, y = 0, the visualization region corresponds to an area of 22.76 mm × 16.89 mm. 100 instantaneous velocity fields were obtained for each Reh. A temporal and spatial average was performed to obtain a velocity profile in zone A; likewise, the corresponding turbulence intensity and shear stress distribution were evaluated. The average velocity profile was evaluated for each Reh. Regarding the vortex center location, it was observed that as Reh increases, the y-direction coordinate moves towards bottom of wall channel. For zone B, it was also observed a reduction of the shear stress as Reh increases.

Original languageEnglish
Title of host publicationFluids and Thermal Systems; Advances for Process Industries
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages731-733
Number of pages3
EditionPARTS A AND B
ISBN (Print)9780791854921
DOIs
StatePublished - 2011
EventASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 - Denver, CO, United States
Duration: 11 Nov 201117 Nov 2011

Publication series

NameASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011
NumberPARTS A AND B
Volume6

Conference

ConferenceASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011
Country/TerritoryUnited States
CityDenver, CO
Period11/11/1117/11/11

Fingerprint

Dive into the research topics of 'Turbulent flow over a facing step at several Reynolds numbers'. Together they form a unique fingerprint.

Cite this