Transport of extraterrestrial biomolecules to the earth: Problem of thermal stability

V. A. Basiuk, J. Douda, R. Navarro-González

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

The idea of extraterrestrial delivery of organic matter to the early Earth is especially attractive at present and is strongly supported by the detection of a large variety of organic compounds, including amino acids and nucleobases, in carbonaceous chondrites. Whether these compounds can be delivered by other space bodies is unclear and depends primarily on capability of the biomolecules to survive high temperatures during atmospheric deceleration and impacts to the terrestrial surface. In the present study we estimated survivability of simple amino acids (α-aminoisobutyric acid, L-alanine, L-valine and L-leucine), purines (adenine and guanine) and pyrimidines (uracil and cytosine) under rapid heating to temperatures of 400 to 1000 °C under N 2 or CO 2 atmosphere. We have found that most of the compounds studied cannot survive the temperatures substantially higher than 700 °C; however at 500-600 °C, the recovery can be at a per cent level (or even 10%-level for adenine, uracil, alanine, and valine). Implications of the data for extraterrestrial delivery of the biomolecules are discussed.

Original languageEnglish
Pages (from-to)505-514
Number of pages10
JournalAdvances in Space Research
Volume24
Issue number4
DOIs
StatePublished - 1999
Externally publishedYes

Fingerprint

Dive into the research topics of 'Transport of extraterrestrial biomolecules to the earth: Problem of thermal stability'. Together they form a unique fingerprint.

Cite this