The actions of lyophilized apple peel on the electrical activity and organization of the ventricular syncytium of the hearts of diabetic rats

Elideth Martínez-Ladrón De Guevara, Nury Pérez-Hernández, Miguel Ángel Villalobos-López, David Guillermo Pérez-Ishiwara, Juan Santiago Salas-Benito, Alejandro Martínez Martínez, Vicente Hernández-García

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

This study was designed to examine the effects of lyophilized red delicious apple peel (RDP) on the action potentials (APs) and the input resistance-threshold current relationship. The experiments were performed on isolated papillary heart muscles from healthy male rats, healthy male rats treated with RDP, diabetic male rats, and diabetic male rats treated with RDP. The preparation was superfused with oxygenated Tyrode's solution at 37°C. The stimulation and the recording of the APs, the input resistance, and the threshold current were made using conventional electrophysiological methods. The RDP presented no significant effect in normal rats. Equivalent doses in diabetic rats reduced the APD and ARP. The relationship between input resistance and threshold current established an inverse correlation. The results indicate the following: (1) The functional structure of the cardiac ventricular syncytium in healthy rats is heterogeneous, in terms of input resistance and threshold current. Diabetes further accentuates the heterogeneity. (2) As a consequence, conduction block occurs and increases the possibility of reentrant arrhythmias. (3) These modifications in the ventricular syncytium, coupled with the increase in the ARP, are the adequate substrate so that, with diabetes, the heart becomes more arrhythmogenic. (4) RDP decreases the APD, the ARP, and most syncytium irregularity caused by diabetes.

Original languageEnglish
Article number8178936
JournalJournal of Diabetes Research
Volume2016
DOIs
StatePublished - 2016

Fingerprint

Dive into the research topics of 'The actions of lyophilized apple peel on the electrical activity and organization of the ventricular syncytium of the hearts of diabetic rats'. Together they form a unique fingerprint.

Cite this