Temporal evolution of bimodal distribution of γ′ precipitates in Ni-Al-Mo alloys under the influence of coherency strains

A. D. Sequeira, H. A. Calderon, G. Kostorz

Research output: Contribution to journalConference articlepeer-review

3 Scopus citations

Abstract

The influence of coherency strains produced by the γ-γ′ lattice mismatch, δ, on the decomposition process of Ni-Al-Mo alloys with a bimodal size distribution is presented. Samples with δ ranging from positive to negative, were investigated in a double-step aging procedure. The evolution of the microstructure and the kinetics of coarsening were studied using transmission electron microscopy (TEM). The lattice mismatch between the matrix and the different classes of precipitates was determined by high-resolution high-temperature x-ray diffraction. It is shown that the strain fields produced by the lattice mismatch can influence dramatically the decomposition of metallic alloys. It is suggested that the reduction of the coarsening rate of the large precipitates, the fast coarsening rate of the small precipitates and the distortions detected in the matrix are all direct consequences of the elastic fields produced by the γ-γ′ lattice mismatch.

Original languageEnglish
Pages (from-to)483-488
Number of pages6
JournalMaterials Research Society Symposium - Proceedings
Volume398
StatePublished - 1996
Externally publishedYes
EventProceedings of the 1995 MRS Fall Meeting - Boston, MA, USA
Duration: 27 Nov 19951 Dec 1995

Fingerprint

Dive into the research topics of 'Temporal evolution of bimodal distribution of γ′ precipitates in Ni-Al-Mo alloys under the influence of coherency strains'. Together they form a unique fingerprint.

Cite this