Synthesis, characterization, and photocatalytic performance of zno–graphene nanocomposites: A review

Elim Albiter, Aura S. Merlano, Elizabeth Rojas, José M. Barrera-Andrade, Ángel Salazar, Miguel A. Valenzuela

Research output: Contribution to journalReview articlepeer-review

20 Scopus citations

Abstract

ZnO is an exciting material for photocatalysis applications due to its high activity, easy accessibility of raw materials, low production costs, and nontoxic. Several ZnO nano and microstruc-tures can be obtained, such as nanoparticles, nanorods, micro flowers, microspheres, among others, depending on the preparation method and conditions. ZnO is a wide bandgap semiconductor present-ing massive recombination of the generated charge carriers, limiting its photocatalytic efficiency and stability. It is common to mix it with metal, metal oxide, sulfides, polymers, and nanocarbon-based materials to improve its photocatalytic behavior. Therefore, ZnO–nanocarbon composites formation has been a viable alternative that leads to new, more active, and stable photocatalytic systems. Mainly, graphene is a well-known two-dimensional material, which could be an excellent candidate to hy-bridize with ZnO due to its excellent physical and chemical properties (e.g., high specific surface area, optical transmittance, and thermal conductivity, among others). This review analyses ZnO–graphene nanocomposites’ recent advances, addressing the synthesis methods and the resulting structural, mor-phological, optical, and electronic properties. Moreover, we examine the ZnO–graphene composites’ role in the photocatalytic degradation of organic/inorganic pollutants.

Original languageEnglish
Article number4
JournalJournal of Composites Science
Volume5
Issue number1
DOIs
StatePublished - 2021

Keywords

  • Composites
  • Graphene
  • Photocatalysis
  • Pollutant degradation
  • ZnO

Fingerprint

Dive into the research topics of 'Synthesis, characterization, and photocatalytic performance of zno–graphene nanocomposites: A review'. Together they form a unique fingerprint.

Cite this