Study of the transient electroosmotic flow of Maxwell fluids in square cross-section microchannels

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Several kinds of fluids with non-Newtonian behavior are manipulated in microfluidic devices for medical, chemical and biological applications. This work presents an analytical solution for the transient electroosmotic flow of Maxwell fluids in square cross-section microchannels. The appropriate combination of the momentum equation with the rheological Maxwell model derives in a mathematical model based in a hyperbolic partial differential equation, that permits to determine the velocity profile. The flow field is solved using the Green's functions for the steadystate regime, and the method of separation of variables for the transient phenomenon in the electroosmotic flow. Taking in to account the normalized form of the governing equations, we predict the influence of the main dimensionless parameters on the velocity profiles. The results show an oscillatory behavior in the transient stage of the fluid flow, which is directly controlled by the dimensionless relaxation time, this parameter is an indicator of the competition between elastic and viscous effects.

Original languageEnglish
Title of host publicationASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791856871
DOIs
StatePublished - 2015
EventASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems - San Francisco, United States
Duration: 6 Jul 20159 Jul 2015

Publication series

NameASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems

Conference

ConferenceASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
Country/TerritoryUnited States
CitySan Francisco
Period6/07/159/07/15

Fingerprint

Dive into the research topics of 'Study of the transient electroosmotic flow of Maxwell fluids in square cross-section microchannels'. Together they form a unique fingerprint.

Cite this