Numerical analysis of thermal effects induced in the hydrodynamics of the heavy oil transport

Salvador Sánchez, Gabriel Ascanio, Juan P. Aguayo, Felipe Sánchez-Minero

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In the present work, thermal effects induced in the hydrodynamics of heavy oil transport in pipelines are analyzed. Here, the thermal dependence of the dynamic viscosity and the mechanical heating caused by viscous dissipation are taking into account; therefore, the mathematical models that represent the study are solved in a coupled manner, evaluating at the same time both, the flow field inside of the pipeline, as well as, its corresponding heat transfer processes with respect to the environment. In order to conduct the analysis properly, numerical solutions are obtained in dimensionless way, and three main dimensionless parameters are defined; namely, β , Λ and Br, which represent the ratio of the internal radius to the length of the pipeline, the thermal conductivity for the diffusive heat transfer process in the conjugated system pipeline-thermal insulation (soil), and the Brinkman number associated to the mechanical heating, respectively. The main results reveal that, when heavy oils (extra-viscous fluids) are transported in pipelines, until a small reduction in their temperature generate substantial increment in the dynamic viscosity, and consequently, the flow rate is reduced in comparison with predictions considering a full thermal insulation condition (adiabatic process). Hence, we can conclude that during the transport of heavy oil the heat transfer and its effects over the flow field have to be estimated and controlled, this with the aim of having an efficient transport.

Original languageEnglish
Title of host publicationDevelopment and Applications in Computational Fluid Dynamics; Industrial and Environmental Applications of Fluid Mechanics; Fluid Measurement and Instrumentation; Cavitation and Phase Change
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791851562
DOIs
StatePublished - 2018
Externally publishedYes
EventASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2018 - Montreal, Canada
Duration: 15 Jul 201820 Jul 2018

Publication series

NameAmerican Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
Volume2
ISSN (Print)0888-8116

Conference

ConferenceASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2018
Country/TerritoryCanada
CityMontreal
Period15/07/1820/07/18

Fingerprint

Dive into the research topics of 'Numerical analysis of thermal effects induced in the hydrodynamics of the heavy oil transport'. Together they form a unique fingerprint.

Cite this