Modeling solar cells: A method for improving their efficiency

Arturo Morales-Acevedo, Norberto Hernández-Como, Gaspar Casados-Cruz

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

After a brief discussion on the theoretical basis for simulating solar cells and the available programs for doing this we proceed to discuss two examples that show the importance of doing numerical simulation of solar cells. We shall concentrate in silicon Heterojunction Intrinsic Thin film aSi/cSi (HIT) and CdS/CuInGaSe2 (CIGS) solar cells. In the first case, we will show that numerical simulation indicates that there is an optimum transparent conducting oxide (TCO) to be used in contact with the p-type aSi:H emitter layer although many experimental researchers might think that the results can be similar without regard of the TCO film used. In this case, it is shown that high work function TCO materials such as ZnO:Al are much better than smaller work function films such as ITO. HIT solar cells made with small work function TCO layers (<4.8 eV) will never be able to reach the high efficiencies already reported experimentally. It will also be discussed that simulations of CIGS solar cells by different groups predict efficiencies around 18-19% or even less, i.e. below the record efficiency reported experimentally (20.3%). In addition, the experimental band-gap which is optimum in this case is around 1.2 eV while several theoretical results predict a higher optimum band-gap (1.4-1.5 eV). This means that there are other effects not included in most of the simulation models developed until today. One of them is the possible presence of an interfacial (inversion) layer between CdS and CIGS. It is shown that this inversion layer might explain the smaller observed optimum band-gap, but some efficiency is lost. It is discussed that another possible explanation for the higher experimental efficiency is the possible variation of Ga concentration in the CIGS film causing a gradual variation of the band-gap. This band-gap grading might help improve the open-circuit voltage and, if it is appropriately done, it can also cause the enhancement of the photo-current density.

Original languageEnglish
Pages (from-to)1430-1435
Number of pages6
JournalMaterials Science and Engineering B: Solid-State Materials for Advanced Technology
Volume177
Issue number16
DOIs
StatePublished - 20 Sep 2012

Keywords

  • Modeling
  • Simulation
  • Solar cells

Fingerprint

Dive into the research topics of 'Modeling solar cells: A method for improving their efficiency'. Together they form a unique fingerprint.

Cite this