Microstructure Evolution of HP40 and HK40 Steels After Isothermal Aging

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Thermo-Calc and experimental analyses were carried out for the as-cast and heat-treated HK40 and HP40 steels. The as-cast steel specimens of about 1 × 1 × 1 cm were aged at 900 °C for times between 100 and 1000 h. As-cast and heat-treated specimens were characterized by X-ray diffraction, SEM, and Vickers hardness. Thermo-Calc Scheil analysis indicated an austenite matrix with the presence of Cr-rich M7C3, and M7C3 and (Nb,Ti)C carbides in the as-cast HK40 and HP40 steels, respectively, which is in agreement with X-ray diffraction, optical microscope, and scanning electron microscope results of present work. The aging treatment at 900 °C produces the precipitation of M23C6 carbides, and M23C6 and (Nb,Ti)C carbides in the austenite matrix of the as-cast HK40 and HP40 steels, respectively. This precipitation process promotes an increase in hardness. Thermo-Calc Prisma also predicted the precipitation of the same phases, and the fastest growth kinetics of precipitation was at 900 °C for the as-cast HK40 and 960 °C for the as-cast HP40 steel. In general, the aging response is better for the as-cast HK40 steel.

Original languageEnglish
Title of host publicationTMS 2022 151st Annual Meeting and Exhibition Supplemental Proceedings
PublisherSpringer Science and Business Media Deutschland GmbH
Pages1442-1450
Number of pages9
ISBN (Print)9783030923808
DOIs
StatePublished - 2022
Event151st Annual Meeting and Exhibition of The Minerals, Metals and Materials Society, TMS 2022 - Anaheim, United States
Duration: 27 Feb 20223 Mar 2022

Publication series

NameMinerals, Metals and Materials Series
ISSN (Print)2367-1181
ISSN (Electronic)2367-1696

Conference

Conference151st Annual Meeting and Exhibition of The Minerals, Metals and Materials Society, TMS 2022
Country/TerritoryUnited States
CityAnaheim
Period27/02/223/03/22

Keywords

  • HK40 steel
  • HP40 steel aging
  • Heat-resistant steels
  • Mechanical properties
  • Precipitation

Fingerprint

Dive into the research topics of 'Microstructure Evolution of HP40 and HK40 Steels After Isothermal Aging'. Together they form a unique fingerprint.

Cite this