Light metal functionalized two-dimensional siligene for high capacity hydrogen storage: DFT study

Akari Narayama Sosa, Brandom Jhoseph Cid, Álvaro Miranda, Luis Antonio Pérez, Fernando Salazar, Alejandro Trejo, Miguel Cruz-Irisson

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Abstract

In this work, the hydrogen storage capacities of two-dimensional siligene (2D-SiGe) functionalized with alkali metal (AM) and alkali-earth metal (AEM) atoms were studied using density functional theory calculations. One AM (Li, Na, K) or AEM (Be, Mg, Ca) atom was placed on the 2D-SiGe surface, and several H2 molecules were placed in the vicinity of the adatom. The results demonstrate that the most favorable siligene site for the adsorption of Li, Na, K and Be atoms is the hollow site, while for the Mg and Ca atoms is the down site. The AM atoms are the only ones with considerable binding energies on the SiGe nanosheets. Pristine 2D-SiGe slightly adsorbs one H2 molecule per hollow site and, therefore, it is not suitable for hydrogen storage. In some of the AM- and AEM-decorated 2D-SiGe, several hydrogen molecules can be physisorbed. In particular, the Na-, K- and Ca-functionalized 2D-SiGe can adsorb six hydrogen molecules, whereas Li and Mg atoms adsorbed three hydrogen molecules, and the Be adatom only adsorbed one hydrogen molecule. The complexes formed by hydrogen molecules adsorbed on the analyzed metal decorated 2D-SiGe are energetically stable, indicating that functionalized 2D-SiGe could be an efficient molecular hydrogen storage media.

Original languageEnglish
Pages (from-to)29348-29360
Number of pages13
JournalInternational Journal of Hydrogen Energy
Volume46
Issue number57
DOIs
StatePublished - 18 Aug 2021

Keywords

  • 2D materials
  • Alkali metals
  • DFT
  • Hydrogen storage
  • Renewable energy
  • Siligene

Fingerprint

Dive into the research topics of 'Light metal functionalized two-dimensional siligene for high capacity hydrogen storage: DFT study'. Together they form a unique fingerprint.

Cite this