Interface states and bio-conjugation of CdSe/ZnS core-shell quantum dots

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

The paper presents the results of photoluminescence (PL) and Raman scattering studies of non-conjugated and bio-conjugated CdSe/ZnS core-shell quantum dots (QDs). The commercial CdSe/ZnS QDs used are characterized by color emission with maxima at 605-610 nm (2.03-2.05 eV). PL spectra of non-conjugated QDs are the superposition of PL bands related to exciton emission in the CdSe core (2.03-2.05 eV) and to hot electron-hole emission via defect states at the CdSe/ZnS interface (2.37 and 2.68 eV). QD conjugation was performed with biomolecules - the antihuman interleukin 10 antibody (antihuman IL10). The PL spectra of bio-conjugated QDs have been changed dramatically: only one PL band related to exciton emission in the CdSe core was detected in bio-conjugated QDs. To explain this effect a model has been proposed which assumes that the QD bio-conjugation process is accompanied by the recharging of acceptor-like interface states at the CdSe/ZnS interface. A comparative analysis of normalized PL spectra of non-conjugated CdSe/ZnS QDs with different intensities of interface state PL has confirmed the proposed electron-hole recombination model in QDs.

Original languageEnglish
Article number095401
JournalNanotechnology
Volume20
Issue number9
DOIs
StatePublished - 2009

Fingerprint

Dive into the research topics of 'Interface states and bio-conjugation of CdSe/ZnS core-shell quantum dots'. Together they form a unique fingerprint.

Cite this