Influence of temperature on transit times and microwave noise performances of SiGe HBT

Research output: Contribution to journalArticlepeer-review

Abstract

The influence of temperature (300 K and 40 K) on intrinsic transit times and microwave noise performances of silicon germanium (SiGe) heterojunction bipolar transistors (HBTs) is investigated. At 300 K, we compared measured and modelled S-parameters and four noise parameters, and we found a good agreement. At 40 K, we compared measured and modelled S-parameters, and we deduced noise performances from the S-parameter measurements. The electric model includes correlated junction noise sources and a proper extraction of the transit times involved in these sources. Moreover, the microwave noise model considers all the physical phenomena that impact noise performances in SiGe HBTs. We analysed three devices having different Ge content (10%-20%, 10%-25% and 10%-30%). At 40 K, the device with 10%-25% reaches one of the lowest base transit times (τB), the lowest minimum noise figure (NFmin), and the lowest equivalent noise resistance (R n), for operation frequencies up to the maximum device dynamic performances (f≈fT) These results demonstrate the excellent potential to develop cryogenic applications of SiGe HBTs.

Original languageEnglish
Article number035020
JournalSemiconductor Science and Technology
Volume31
Issue number3
DOIs
StatePublished - 17 Feb 2016

Keywords

  • RF applications
  • cryoelectronics
  • semiconductors

Fingerprint

Dive into the research topics of 'Influence of temperature on transit times and microwave noise performances of SiGe HBT'. Together they form a unique fingerprint.

Cite this