Green composites of poly(3-hydroxybutyrate) and curaua fibers: Morphology and physical, thermal, and mechanical properties

Lucas V. Scalioni, Miguel C. Gutiérrez, Maria I. Felisberti

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

In this article, we report the morphology and thermal, mechanical and physical properties of poly(3-hydroxybutyrate) (PHB)/curaua composites containing triethyl citrate (TEC) as the plasticizer. The composites were prepared by mechanical mixing using pristine and chemically treated fibers (10 wt %) and TEC (30 wt %) and characterized by differential scanning calorimetry, dynamic mechanical analysis, X-ray diffraction, small angle X-ray scattering, polarized optical microscopy, scanning electron microscopy, tensile tests, impact resistance test, thermodilatometry, and thermal conductivity measurements. The curaua fibers acted as nucleating agent and strongly influenced the morphology of the crystalline phase of PHB, increasing the lamella thickness, decreasing the crystal size and inducing spherulite–axialite transition. These characteristics of the PHB crystalline phase determined all the properties of the composites. The tensile properties of the composites were comparable with those of neat PHB, while the impact resistance of composites was comparable with that of plasticized PHB. The higher heat capacity and thermal expansion coefficient and the lower thermal conductivity of the composites compared with neat PHB reflect the morphological changes in the PHB crystalline phase. The strategy of developing a green polymeric material from ecofriendly components exhibiting a good balance of properties by combining curaua fibers, TEC, and PHB was successful.

Original languageEnglish
Article number44676
JournalJournal of Applied Polymer Science
Volume134
Issue number14
DOIs
StatePublished - 10 Apr 2017

Keywords

  • biopolymers and renewable polymers
  • composites
  • mechanical properties
  • morphology
  • thermal properties

Fingerprint

Dive into the research topics of 'Green composites of poly(3-hydroxybutyrate) and curaua fibers: Morphology and physical, thermal, and mechanical properties'. Together they form a unique fingerprint.

Cite this