Epitaxial growth of a quantum well of AlxGa1-xAs/ GaAs/AlxGa1-xAs using metal organic vapor and solid arsenic as precursors

R. Castillo-Ojeda, M. Galván-Arellano, J. Díaz-Reyes

Research output: Contribution to journalScientific reviewpeer-review

Abstract

In this work is discussed the use of a deposition system of semiconductor epitaxial layers of the MOCVD type (Metal Organic Chemical Vapour Deposition), different of the conventional ones that use arsine as arsenic precursor. In the growth system has replaced the arsine by elemental arsenic, which is more easily manageable without the hazards presented by the handling of high pressure cylinders of arsine. As a result of the substitution of the arsine by solid arsenic, the incorporation kinetic of the species on the growth surface is severely modified, of such way, that the impurities incorporation of such as carbon and oxygen is increased, deteriorating of this way the physical properties of the grown materials. In this work we make a study on the effects of the use of arsenic like precursor, at the same time as we presented the results obtained during the elaboration of a quantum structure by means of this nonconventional system. In order to evaluate the optical characteristics of the samples, it was measured low temperature photoluminescence, the existence of the quantum well is supported by depth profile measurements by secondary ion mass spectroscopy (SIMS), and finally atomic force microscopy (AFM) images are presented to evaluate the surface roughness.
Original languageAmerican English
Pages (from-to)120-125
Number of pages107
JournalSuperficies y Vacio
StatePublished - 1 Dec 2013

Fingerprint

Dive into the research topics of 'Epitaxial growth of a quantum well of AlxGa1-xAs/ GaAs/AlxGa1-xAs using metal organic vapor and solid arsenic as precursors'. Together they form a unique fingerprint.

Cite this