Enhancing oxygen reduction reaction activity and stability of platinum via oxide-carbon composites

B. Ruiz Camacho, C. Morais, M. A. Valenzuela, N. Alonso-Vante

Research output: Contribution to journalArticlepeer-review

82 Scopus citations

Abstract

A series of oxide-carbon composites using three different oxides (TiO 2, SnO2, ZnO) has been prepared using sol-gel (SG) and/or precipitation (P) chemical methods. A selective platinum deposition onto the oxide sites to obtain Pt/TiO2-C, Pt/SnO2-C and Pt/ZnO-C was carried out by generating electron-hole pairs on the oxide under UV-irradiation. This process takes advantage of the photogenerated electron on the oxide in the composite to reduce noble metal anions [PtCl6] 2- to Pt0 in the presence of a sacrificial electron donor. The Pt/oxide-carbon materials were characterized by XRD, TEM and CO stripping voltammetry combined with in situ infrared reflection absorption spectroscopy (FTIRS). The electrochemical stability of the different Pt/oxide-C catalysts was investigated by cyclic voltammetry in sulfuric acid medium and their electrochemical activity was evaluated in the oxygen reduction reaction (ORR) at RT. The Pt/oxide-carbon materials showed higher ORR activity than Pt/C catalyst. In situ FTIR spectroscopy coupled with CO stripping voltammetry reveals that CO oxidation on Pt/TiO2-C and Pt/SnO2-C samples takes place at lower electrode potentials as compared to Pt/C. Under the same conditions, the electrochemical stability of platinum center is higher on TiO2-C and SnO2-C composites than ZnO-C and C substrates.

Original languageEnglish
Pages (from-to)36-43
Number of pages8
JournalCatalysis Today
Volume202
Issue number1
DOIs
StatePublished - 15 Mar 2013

Keywords

  • Composites
  • FTIRS
  • ORR
  • Oxide-carbon
  • Photo-deposition
  • Pt nanoparticles
  • SnO
  • TiO
  • ZnO

Fingerprint

Dive into the research topics of 'Enhancing oxygen reduction reaction activity and stability of platinum via oxide-carbon composites'. Together they form a unique fingerprint.

Cite this