Effect of dichloromethylene diphosphonate on liver regeneration following thioacetamide-induced necrosis in rats

Mirandeli Bautista, María Ángeles Gómez Del Rio, Juana Benedí, María Isabel Sánchez-Reus, José A. Morales-González, Ana María Téllez-López, Maricela López-Orozco

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

AIM: To study the effect of dichloromethylene diphosphonate (DMDP), a selective Kupffer cell toxicant in reference to liver damage and postnecrotic liver regeneration in rats induced by sublethal dose thioacetamide (TA). METHODS: Rats, intravenously (iv ) pre-treated with a single dose of DMDP (10 mg/kg), were intraperitoneally (ip ) injected with TA 6.6 mmol/kg (per 500 mg/kg body weight). Hepatocytes were isolated from rats at 0, 24, 48 and 72 h following TA intoxication and blood and liver samples were obtained. To evaluate the mechanisms involved in the postnecrotic regenerative state, DNA distribution and ploidy time course were assayed in isolated hepatocytes. Circulating cytokine tumor necrosis factor-alpha (TNF-α) was assayed in serum and determined by reverse transcriptase-polymerase chain reaction in liver extract. RESULTS: The effect of DMDP induced noticeable changes in postnecrotic regeneration, causing an increased percentage of hepatocytes in the cell cycle S phase. The increase at 24 h in S1 population in rats pretreated with DMDP + TA was significantly (P < 0.05) different compared with that of the TA group (18.07% vs 8.57%). Hepatocytes increased their proliferation as a result of these changes. Also, TNF-α expression and serum level were increased in rats pre-treated with DMDP. Thus, DMDP pre-treatment reduced TA-induced liver injury and accelerated postnecrotic liver regeneration. CONCLUSION: These results demonstrate that Kupffer cells are involved in TA-induced liver, as well as in postnecrotic proliferative liver states.

Original languageEnglish
Pages (from-to)379-386
Number of pages8
JournalWorld Journal of Hepatology
Volume5
Issue number7
DOIs
StatePublished - 2013

Keywords

  • Cell cycle
  • Dichloromethylene diphosphonate
  • Hepatotoxicity
  • Kupffer cells
  • Thioacetamide

Fingerprint

Dive into the research topics of 'Effect of dichloromethylene diphosphonate on liver regeneration following thioacetamide-induced necrosis in rats'. Together they form a unique fingerprint.

Cite this