Dendrite Morphological Neural Networks trained by Differential Evolution

Fernando Arce, Erik Zamora, Humberto Sossa, Ricardo Barron

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

A new efficient training algorithm for a Dendrite Morphological Neural Network is proposed. Based on Differential Evolution, the method optimizes the number of dendrites and increases classification performance. This technique has two initialisation ways of learning parameters. The first selects all the patterns and opens a hyper-box per class with a length such that all the patterns of each class remain inside. The second generates clusters for each class by k-means++. After the initialisation, the algorithm divides each hyper-box and applies Differential Evolution to the resultant hyper-boxes to place them in the best position and the best size. Finally, the method selects the set of hyper-boxes that produced the least error from the least number. The new training method was tested with three synthetic and six real databases showing superiority over the state-of-the-art for Dendrite Morphological Neural Network training algorithms and a similar performance as well as a Multilayer Perceptron, a Support Vector Machine and a Radial Basis Network.

Original languageEnglish
Title of host publication2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509042401
DOIs
StatePublished - 9 Feb 2017
Event2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016 - Athens, Greece
Duration: 6 Dec 20169 Dec 2016

Publication series

Name2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016

Conference

Conference2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016
Country/TerritoryGreece
CityAthens
Period6/12/169/12/16

Fingerprint

Dive into the research topics of 'Dendrite Morphological Neural Networks trained by Differential Evolution'. Together they form a unique fingerprint.

Cite this