A benchmarking analysis of a data-driven gas turbine diagnostic approach

Igor Loboda, Juan Luis Pérez-Ruiz, Sergiy Yepifanov

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

In an effort to better compare particular gas turbine diagnostic solutions and recommend the best solution, the software tool called Propulsion Diagnostic Method Evaluation Strategy (ProDiMES) has been developed. This benchmarking platform includes a simulator of the aircraft engine fleet with healthy and faulty engines. The platform presents a public approach, at which different investigators can verify and compare their algorithms for the diagnostic stages of feature extraction, fault detection, and fault identification. Using ProDiMES, some different diagnostic solutions have been compared so far. This study presents a new attempt to enhance a gas turbine diagnostic process. A data-driven algorithm that embraces the mentioned three diagnostic stages is verified on the basis of ProDiMES. At the feature extraction stage, this algorithm uses a polynomial model of an engine baseline to compute deviations of actual gas path measurements from the corresponding values of a healthy engine. At the fault detection and fault identification stages, a common classification for fault detection and fault identification is firstly constructed using deviation vectors (patterns). One of the three chosen pattern recognition techniques then performs both fault detection and fault identification as a common process. Numerous numerical experiments have been conducted to select the best configurations of the baseline model, a pertinent structure of the fault classification, and the best recognition technique. The experiments were accompanied by a computational precision analysis for each component of the proposed algorithm. The comparison of the final diagnostic ProDiMES metrics obtained under the selected optimal conditions with the metrics of other diagnostic solutions shows that the proposed algorithm is a promising tool for gas turbine monitoring systems.

Original languageEnglish
Title of host publicationCeramics; Controls, Diagnostics, and Instrumentation; Education; Manufacturing Materials and Metallurgy
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791851128
DOIs
StatePublished - 2018
EventASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, GT 2018 - Oslo, Norway
Duration: 11 Jun 201815 Jun 2018

Publication series

NameProceedings of the ASME Turbo Expo
Volume6

Conference

ConferenceASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, GT 2018
Country/TerritoryNorway
CityOslo
Period11/06/1815/06/18

Fingerprint

Dive into the research topics of 'A benchmarking analysis of a data-driven gas turbine diagnostic approach'. Together they form a unique fingerprint.

Cite this