3D characterization of surface state in a knee prosthesis

I. Hilerio, M. A. Barrón, M. Vite

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

From the medical point of view it is important that the surface roughness in a knee prosthesis be small in order to reduce the wear friction due to the physical contact of the prosthesis with bone. Given the complex form of the knee prosthesis, formerly the finishing process was carried out through a manual technique. However, this technique has many drawbacks. In this work a mechanochemical method (MCM) for finishing is proposed in order to obtain a proper surface state of the prosthesis. The selected MCM consisted of a mild wear procedure which employs HLB-11 as tensoactive additive. Composition of the knee prosthesis pieces was as follows: 26.5% Cr, 4.5% Mo, and the balance was cobalt. In order to optimize the prosthesis manufacturing, the evolution of the surface state along the finishing process was studied and a 3D analysis of the surface topography was carried out. To do this, two types of topometers were utilized, one of them with a tactile sensor and another one with an optical sensor. Fourier transform was applied to data roughness in order to determine the skweness (Rsk) and kurtosis (Rku) roughness values.

Original languageEnglish
Title of host publicationProceedings of the World Tribology Congress III - 2005
PublisherAmerican Society of Mechanical Engineers
Pages679-680
Number of pages2
ISBN (Print)0791842029, 9780791842027
DOIs
StatePublished - 2005
Event2005 World Tribology Congress III - Washington, D.C., United States
Duration: 12 Sep 200516 Sep 2005

Publication series

NameProceedings of the World Tribology Congress III - 2005

Conference

Conference2005 World Tribology Congress III
Country/TerritoryUnited States
CityWashington, D.C.
Period12/09/0516/09/05

Fingerprint

Dive into the research topics of '3D characterization of surface state in a knee prosthesis'. Together they form a unique fingerprint.

Cite this