Light emitting mechanisms dependent on stoichiometry of Si-rich-SiNx films grown by PECVD

T. V. Torchynska, J. L. Casas Espinola, J. A. Jaramillo Gomez, J. A. Bentosa Gutiérrez, L. Khomenkova, A. Slaoui

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

Light emission and morphology of silicon-rich silicon nitride films grown by plasma-enhanced chemical vapor deposition were investigated versus film’s stoichiometry. The excess silicon content in the films was controlled varying the NH3/SiH4 gas flow ratio from 0.45 up to 1.0. High-temperature annealing was employed to form the silicon quantum dots (QDs) and to enhance the photoluminescence (PL) in visible spectral range. The PL spectrum was found to be complex. The competition of five PL bands leads to the non-monotonous variation of total PL peak position in the range of 1.55–2.95 eV when the Si excess content increases. The shape of PL spectra depends also on an excitation light wavelength. It is shown that for the films fabricated with R ≤ 0.56 and R ≥ 0.67 the dominant contribution into PL spectra is given by native SiNx defects, whereas in the films obtained with R = 0.59–0.67 the Si-QDs form the main radiative channel. The highest PL intensity is detected in Si-rich SiNx films grown at R = 0.59–0.67 as well. PL mechanisms are discussed in terms of the contribution of different radiative channels in the light emission process that can show the ways for the optimization of SiNx light-emitting properties.

Idioma originalInglés
Páginas (desde-hasta)6977-6981
Número de páginas5
PublicaciónJournal of Materials Science: Materials in Electronics
Volumen28
N.º10
DOI
EstadoPublicada - 1 may. 2017

Huella

Profundice en los temas de investigación de 'Light emitting mechanisms dependent on stoichiometry of Si-rich-SiNx films grown by PECVD'. En conjunto forman una huella única.

Citar esto