Iso efficiency in nanostructured thermoelectric materials

Miguel Angel Olivares-Robles, Carlos Alberto Badillo-Ruiz, Pablo Eduardo Ruiz-Ortega

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

A study is carried out for the efficiency of segmented thermoelectric microgenerators (μSTEGs). The study includes a) n-type and p-type double or triple segmentation and b) geometry shape factor of the thermoelements. The temperature-dependent thermoelectric properties of nanostructured materials are determined from experimental data. In addition, the impact of internal resistance, as a function of the thermoelement-geometric shape factor, on the efficiency surfaces of the μSTEGs is studied based on non-equilibrium thermodynamics. Results show that the efficiency surfaces of different μSTEGs intersect under different working conditions. The curve formed by the intersection points of the efficiency surfaces of the two thermoelectric systems is called the iso-efficiency curve. Thus, segmented thermoelectric systems with different efficiencies can reach a common efficiency for a given segmentation and geometric shape form of their thermoelements under different working conditions. The common efficiency that reaches (corresponds to) these thermoelectric systems is called Iso efficiency. The iso efficiency is reached due to the n-type and p-type material segmentation and geometric shape, which affect each thermoelement's internal resistance. Furthermore, the efficiency of a μSTEG system can be improved due to the combination of effects such as the relationship between load resistance and internal resistance when it is affected by the geometric shape, temperature difference, and segmentation. Our results allow determinate the new iso efficiency parameters with a good selection of the thermodynamic, electrical, and geometric parameters and establish guidance for other materials engineering investigations, to improve the efficiency of μSTEGs.

Idioma originalInglés
Número de artículo115857
PublicaciónEnergy Conversion and Management
Volumen266
DOI
EstadoPublicada - 15 ago. 2022

Huella

Profundice en los temas de investigación de 'Iso efficiency in nanostructured thermoelectric materials'. En conjunto forman una huella única.

Citar esto