Effects of ramification and connectivity degree on site percolation threshold on regular lattices and fractal networks

Alexander S. Balankin, M. A. Martínez-Cruz, M. D. Álvarez-Jasso, M. Patiño-Ortiz, J. Patiño-Ortiz

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

5 Citas (Scopus)

Resumen

© 2018 Elsevier B.V. This Letter is focused on the impact of network topology on the site percolation. Specifically, we study how the site percolation threshold depends on the network dimensions (topological d and fractal D), degree of connectivity (quantified by the mean coordination number Z ∞ ), and arrangement of bonds (characterized by the connectivity index Q also called the ramification exponent). Using the Fisher's containment principle, we established exact inequalities between percolation thresholds on fractal networks contained in the square lattice. The values of site percolation thresholds on some fractal lattices were found by numerical simulations. Our findings suggest that the most relevant parameters to describe properly the values of site percolation thresholds on fractal networks contained in square lattice (Sierpiński carpets and Cantor tartans) and based on the square lattice (weighted planar stochastic fractal and Cantor lattices) are the mean coordination number and ramification exponent, but not the fractal dimension. Accordingly, we propose an empirical formula providing a good approximation for the site percolation thresholds on these networks. We also put forward an empirical formula for the site percolation thresholds on d-dimensional simple hypercubic lattices.
Idioma originalInglés estadounidense
Páginas (desde-hasta)957-966
Número de páginas860
PublicaciónPhysics Letters, Section A: General, Atomic and Solid State Physics
DOI
EstadoPublicada - 11 mar 2019

Huella

Profundice en los temas de investigación de 'Effects of ramification and connectivity degree on site percolation threshold on regular lattices and fractal networks'. En conjunto forman una huella única.

Citar esto