Effects of (-)-epicatechin on neuroinflammation and hyperphosphorylation of tau in the hippocampus of aged mice

Viridiana Navarrete-Yañez, Alejandra Garate-Carrillo, Alonso Rodriguez, Patricia Mendoza-Lorenzo, Guillermo Ceballos, Claudia Calzada-Mendoza, Michael C. Hogan, Francisco Villarreal, Israel Ramirez-Sanchez

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

Evidence has implicated oxidative stress (OS) and inflammation as drivers of neurodegenerative pathologies. We previously reported on the beneficial effects of (-)-epicatechin (Epi) treatment on aging-induced OS and its capacity to restore modulators of mitochondrial biogenesis in the prefrontal cortex of 26-month-old male mice. In the present study using the same mouse model of aging, we examined the capacity of Epi to mitigate hippocampus OS, inflammation, hyperphosphorylation of tau protein, soluble β-amyloid protein levels, cell survival, memory, anxiety-like behavior levels and systemic inflammation. Mice were subjected to 4 weeks of Epi treatment (1 mg kg-1 day-1) and samples of the hippocampus were obtained. Assessments of the OS markers, protein carbonyls, and malondialdehyde levels demonstrated their significant increase (∼3 fold) with aging that were partially suppressed by Epi. The protein levels of the glial fibrillary acidic protein, inflammatory factor 1 (Iba1), pro-inflammatory cytokines, interleukins (IL-1β, IL-3, 5, 6 and 15), cyclooxygenase 2, tumor necrosis factor α, nuclear factor-activated B cells and interferon γ increase with aging and were also significantly decreased with Epi treatment. However, anti-inflammatory cytokines, IL-1ra, IL-10 and 11 decrease with aging and were restored with Epi. Epi also reversed the aging effects on the hyperphosphorylation of tau, increased soluble β-amyloid levels (∼2 fold), cellular death (as per caspase 3 and 9 activity), and reduced nerve growth factor and triggering receptor expressed on myeloid cells 2 levels. Measures of anxiety like-behavior and memory demonstrated improvements with Epi treatment. Indicators of systemic inflammation increase with aging and Epi was capable of decreasing blood inflammatory markers. Altogether, the results show a significant capacity of Epi to mitigate hippocampus OS and inflammation leading to improved brain function.

Idioma originalInglés
Páginas (desde-hasta)10351-10361
Número de páginas11
PublicaciónFood and Function
Volumen11
N.º12
DOI
EstadoPublicada - dic 2020

Huella

Profundice en los temas de investigación de 'Effects of (-)-epicatechin on neuroinflammation and hyperphosphorylation of tau in the hippocampus of aged mice'. En conjunto forman una huella única.

Citar esto