### Resumen

A theorem from the classical complex analysis proved by Davydov in 1949 is extended to the theory of solution of a special case of the Beltrami equation in the z-complex plane (i.e., null solutions of the differential operator equation is present. It is proved that if γ is a rectifiable Jordan closed curve and f is a continuous complex-valued function on γ such that the integral equation is present converges uniformly on γ as r∈→∈0, where n(ζ) is the unit vector of outer normal on γ at a point ζ and ds is the differential of arc length, then the β-Cauchy-type integral equation is present admits a continuous extension to γ and a version of the Sokhotski-Plemelj formulas holds. © 2008 Springer Science+Business Media, Inc.

Idioma original | Inglés estadounidense |
---|---|

Páginas (desde-hasta) | 1683-1690 |

Número de páginas | 1513 |

Publicación | Ukrainian Mathematical Journal |

DOI | |

Estado | Publicada - 1 nov 2008 |

Publicado de forma externa | Sí |

## Huella Profundice en los temas de investigación de 'A property of the β-Cauchy-type integral with continuous density'. En conjunto forman una huella única.

## Citar esto

Abreu Blaya, R., & Bory Reyes, J. (2008). A property of the β-Cauchy-type integral with continuous density.

*Ukrainian Mathematical Journal*, 1683-1690. https://doi.org/10.1007/s11253-009-0162-8