A property of the β-Cauchy-type integral with continuous density

R. Abreu Blaya, J. Bory Reyes

Resultado de la investigación: Contribución a una revistaArtículo

4 Citas (Scopus)

Resumen

A theorem from the classical complex analysis proved by Davydov in 1949 is extended to the theory of solution of a special case of the Beltrami equation in the z-complex plane (i.e., null solutions of the differential operator equation is present. It is proved that if γ is a rectifiable Jordan closed curve and f is a continuous complex-valued function on γ such that the integral equation is present converges uniformly on γ as r∈→∈0, where n(ζ) is the unit vector of outer normal on γ at a point ζ and ds is the differential of arc length, then the β-Cauchy-type integral equation is present admits a continuous extension to γ and a version of the Sokhotski-Plemelj formulas holds. © 2008 Springer Science+Business Media, Inc.
Idioma originalInglés estadounidense
Páginas (desde-hasta)1683-1690
Número de páginas1513
PublicaciónUkrainian Mathematical Journal
DOI
EstadoPublicada - 1 nov 2008
Publicado de forma externa

Huella Profundice en los temas de investigación de 'A property of the β-Cauchy-type integral with continuous density'. En conjunto forman una huella única.

  • Citar esto