A micro-differential evolution algorithm for continuous complex functions

M. Olguin-Carbajal, J. C. Herrera-Lozada, J. Sandoval-Gutierrez, J. I. Vasquez-Gomez, J. F. Serrano-Talamantes, F. A. Chavez-Estrada, I. Rivera-Zarate, M. Hernandez-Bolanos

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)


In this paper, we incorporate a local search procedure into a micro differential evolution algorithm MED with the aim of solving the HappyCat function. Our purpose is to find out if our proposal is more competitive than a Ray-ES algorithm. We test our micro Differential Evolution algorithm (\mu DE) on HappyCat and HGBat functions. The results that we obtained with micro-DE are better compared with the results the original RayES reference algorithm. This analysis supports our conjecture that a reduced population DE hybridized with a local search (Ray search) is a key combination in dealing with this function. Our results support the hypothesis that a well-focused micro population is more accurate and efficient than existing techniques, representing (that of micro-algorithms) a serious competitor because of its efficiency and accuracy. In fact, the proposed (but never solved) HGBat function can be dealt with, showing the scalability and potential future uses of our technique.

Idioma originalInglés
Número de artículo8906028
Páginas (desde-hasta)172783-172795
Número de páginas13
PublicaciónIEEE Access
EstadoPublicada - 1 ene 2019


Profundice en los temas de investigación de 'A micro-differential evolution algorithm for continuous complex functions'. En conjunto forman una huella única.

Citar esto