A FRACTIONAL BOREL-POMPEIU-TYPE FORMULA FOR HOLOMORPHIC FUNCTIONS OF TWO COMPLEX VARIABLES

José Oscar González-Cervantes, Juan Bory-Reyes

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

Resumen

This paper is a continuation of our work [J. O. González Cervantes and J. Bory Reyes, A quaternionic fractional Borel-Pompeiu type formula, Fractal 30(1) (2022) 2250013], where we introduced a fractional operator calculus related to a fractional ψ-Fueter operator in the one-dimensional Riemann-Liouville derivative sense in each direction of the quaternionic structure, that depends on an additional vector of complex parameters with fractional real parts. This allowed us also to study a pair of lower order fractional operators and prove the associated analogues of both Stokes and Borel-Pompieu formulas for holomorphic functions in two complex variables.

Idioma originalInglés
Número de artículo2250092
PublicaciónFractals
Volumen30
N.º4
DOI
EstadoPublicada - 1 jun 2022

Huella

Profundice en los temas de investigación de 'A FRACTIONAL BOREL-POMPEIU-TYPE FORMULA FOR HOLOMORPHIC FUNCTIONS OF TWO COMPLEX VARIABLES'. En conjunto forman una huella única.

Citar esto