Volumetric oxygen transfer coefficient as a means of improving volumetric ethanol productivity and a criterion for scaling up ethanol production with Escherichia coli

Marco T. Fernández-Sandoval, Juvencio Galíndez-Mayer, Cessna L. Moss-Acosta, Guillermo Gosset, Alfredo Martinez

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

BACKGROUND: This study evaluated the influence of different micro-aerated conditions, including the aeration rate, the volumetric oxygen transfer coefficient (kLa) and the oxygen transfer rate (OTR), on improving ethanol productivity and scale-up of the fermentation step of the ethanologenic Escherichia coli strain MS04 in mineral medium supplemented with xylose, glucose, and sodium acetate. RESULTS: Growth and ethanol production results using 0.75 L of fermenter showed that micro-aeration (0.1 vvm, 400 rpm) improved the volumetric ethanol productivity and sugar consumption rate compared with the anaerobic condition (0 vvm, 400 rpm) or higher aeration rates (>0.2 vvm) without reducing significantly the ethanol yield. The kLa and the OTR were estimated and a kLa value of 7.2 h−1 was used as a criterion to scale-up the fermentation process from 0.75 L to 9.16 L and 110 L. During scale-up, the volumetric ethanol productivity and ethanol yield of consumed sugars were maintained at similar levels to those obtained in the laboratory in the 0.75 L fermenter. CONCLUSIONS: The controlled supply of low levels of oxygen promoted an increase in the concentration of biomass favoring the production and volumetric productivity of ethanol. The use of kLa allowed the fermentation step to be scaled up with ethanologenic E. coli maintaining similar ethanol yields and productivities.

Original languageEnglish
Pages (from-to)981-989
Number of pages9
JournalJournal of Chemical Technology and Biotechnology
Volume92
Issue number5
DOIs
StatePublished - 1 May 2017

Keywords

  • Escherichia coli
  • glucose
  • scale-up
  • volumetric ethanol productivity
  • volumetric oxygen transfer coefficient
  • xylose

Fingerprint

Dive into the research topics of 'Volumetric oxygen transfer coefficient as a means of improving volumetric ethanol productivity and a criterion for scaling up ethanol production with Escherichia coli'. Together they form a unique fingerprint.

Cite this