Thermodynamic analysis of an array of isothermal endoreversible electric engines

M. A. Barranco-Jiménez, A. Ocampo-García, F. Angulo-Brown

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

The Curzon–Ahlborn (CA) efficiency is widely known in the finite-time thermodynamics. This CA efficiency has been found in a number of energy converters operating at diverse scales such as microscopic, mesoscopic and macroscopic levels under a maximum power regime. De Mey and De Vos (MV) proposed an array of thermal engines that in spite of using only linear heat transfer laws, it does not own the CA efficiency when performs at maximum power output. Such an array consists of two CA-like engines connected by a thermal conductor. Recently, a MV-like array of isothermal endoreversible chemical engines (IEC-MV array) was treated by us with endoreversible and thermoeconomic approaches by means of a decomposition method, which consists in the conversion of a non endoreversible array of coupled CA-engines into an equivalent set of uncoupled endoreversible engines sharing the same thermodynamic reservoirs. In this work, we extended the IEC-MV array towards a more general case including also both electric resistances and reservoirs. This MV-like array of isothermal-electrical endoreversible engines using once more the decomposition method leads to well-known properties of electric circuits. In the present analysis, we consider three different performance regimes: Maximum power output, maximum ecological function and maximum efficiency.

Original languageEnglish
Article number153
JournalEuropean Physical Journal Plus
Volume135
Issue number2
DOIs
StatePublished - 1 Feb 2020

Fingerprint

Dive into the research topics of 'Thermodynamic analysis of an array of isothermal endoreversible electric engines'. Together they form a unique fingerprint.

Cite this