Oxidative stress, mitochondrial function and adaptation to exercise: New perspectives in nutrition

Nancy Vargas-Mendoza, Marcelo Angeles-Valencia, Ángel Morales-González, Eduardo Osiris Madrigal-Santillán, Mauricio Morales-Martínez, Eduardo Madrigal-Bujaidar, Isela Álvarez-González, José Gutiérrez-Salinas, César Esquivel-Chirino, Germán Chamorro-Cevallos, José Melesio Cristóbal-Luna, José A. Morales-González

Research output: Contribution to journalReview articlepeer-review

24 Scopus citations

Abstract

Cells have the ability to adapt to stressful environments as a part of their evolution. Physical exercise induces an increase of a demand for energy that must be met by mitochondria as the main (ATP) provider. However, this process leads to the increase of free radicals and the so-called reactive oxygen species (ROS), which are necessary for the maintenance of cell signaling and homeostasis. In addition, mitochondrial biogenesis is influenced by exercise in continuous crosstalk between the mitochondria and the nuclear genome. Excessive workloads may induce severe mitochondrial stress, resulting in oxidative damage. In this regard, the objective of this work was to provide a general overview of the molecular mechanisms involved in mitochondrial adaptation during exercise and to understand if some nutrients such as antioxidants may be implicated in blunt adaptation and/or an impact on the performance of exercise by different means.

Original languageEnglish
Article number1269
JournalLife
Volume11
Issue number11
DOIs
StatePublished - Nov 2021

Keywords

  • Antioxidants
  • Exercise
  • Exercise performance
  • Mitochondrial adaptation
  • Oxidative damage
  • Oxidative stress
  • ROS/RNS

Fingerprint

Dive into the research topics of 'Oxidative stress, mitochondrial function and adaptation to exercise: New perspectives in nutrition'. Together they form a unique fingerprint.

Cite this