Modeling the gte under its dynamic heating conditions

Sergiy V. Yepifanov, Roman L. Zelenskyi, Igor Loboda

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A modern gas turbine engine (GTE) is a complex non-linear dynamic system with the mutual effect of gas-dynamic and thermal processes in its components. The engine development requires the precise real-time simulation of all main operating modes. One of the most complex operating modes for modeling is "cold stabilization", which is the rotors acceleration without completely heated up the turbine elements. The dynamic heating problem is a topical practical issue. Solving the problem requires coordinating a gas-path model with heat and stress models, which is also a significant scientific problem. The phenomenon of interest is the radial clearances change during engines operation and its influence on engines static and dynamic performances. To consider the clearance change, it is necessary to synthesize the quick proceeding stress-state models (QPSSM) of a rotor and a casing for the initial temperature and dynamic heating. The unique feature of the QPSSM of GTEs is separate equation sets, which allow the heat exchange between structure elements and the gas (air) and the displacements of the turbine rotor and the casing. This ability appears as a result of determining the effect of each factor on different structural elements of the engine. The presented method significantly simplifies the model identification, which can be performed based on a precise calculation of the unsteady temperature fields of the structural elements and the variation of the radial clearance. Thus, the present paper addresses a new method to model the engine dynamics considering its heating up. The method is based on the integration of three models: the gas-path dynamics model, the clearance dynamics model and the model of the clearance effect on the efficiency. The paper also comprises the program implementation of the models. The method was tested by applying to a particular turbofan engine.

Original languageEnglish
Title of host publicationCeramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791845752
DOIs
StatePublished - 2014
EventASME Turbo Expo 2014: Turbine Technical Conference and Exposition, GT 2014 - Dusseldorf, Germany
Duration: 16 Jun 201420 Jun 2014

Publication series

NameProceedings of the ASME Turbo Expo
Volume6

Conference

ConferenceASME Turbo Expo 2014: Turbine Technical Conference and Exposition, GT 2014
Country/TerritoryGermany
CityDusseldorf
Period16/06/1420/06/14

Fingerprint

Dive into the research topics of 'Modeling the gte under its dynamic heating conditions'. Together they form a unique fingerprint.

Cite this