Macro and microstructural effects of the application of an induced axial magnetic field during the deposition of aluminum weld beads

M. A. García, V. H. López M, R. García H, F. F. Curiel L, R. R. Ambríz R

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

In this work, aluminum weld beads were deposited on aluminum plates of commercial purity (12.7 mm thick), using an ER-5356 filler wire. The aim of the experiments was to assess the effects that yield the induction of an axial magnetic field (AMF) during the application of the weld beads using the direct current gas metal arc welding process (DC-GMAW). An external power source was use to induce magnetic fields between 0 to 28 mT. The effects of the magnetic fields were assessed in terms of the macrostructural features of the deposits, morphology of the grain structure, grain size and grain size distribution in the weld metal. Macrostructural characteristics of the weld beads revealed that increasing the intensity of the magnetic induction to produce a magnetic field above 14 mT, leads to a significant loss of feeding material and there is a tendency of the deposits to increase their width and reduce penetration. Perturbation of the weld pool induced by the application of the AMF noticeably modified the grain structure in the weld metal. In particular, for the intensities of 5 and 14 mT, columnar growth was essentially non-existent. Grain size distribution plots showed, generally speaking, that the use of magnetic fields is an efficient method to produce homogeneous grain structures within the weld metal. Finite element analysis was used to explain the weld bead geometry with the intensity of the magnetic field.

Original languageEnglish
Title of host publicationMaterials Characterization
Pages111-116
Number of pages6
StatePublished - 2010
Externally publishedYes
Event18th International Materials Research Congress 2009 - Cancun, Mexico
Duration: 16 Aug 200921 Aug 2009

Publication series

NameMaterials Research Society Symposium Proceedings
Volume1242
ISSN (Print)0272-9172

Conference

Conference18th International Materials Research Congress 2009
Country/TerritoryMexico
CityCancun
Period16/08/0921/08/09

Fingerprint

Dive into the research topics of 'Macro and microstructural effects of the application of an induced axial magnetic field during the deposition of aluminum weld beads'. Together they form a unique fingerprint.

Cite this