Investigation on the protective effects of cranberry against the DNA damage induced by benzo[a]pyrene

Eduardo Madrigal-Santillán, Sonia Fragoso-Antonio, Carmen Valadez-Vega, Gloria Solano-Solano, Clara Zúñiga Pérez, Manuel Sánchez-Gutiérrez, Jeannett A. Izquierdo-Vega, José Gutiérrez-Salinas, Jaime Esquivel-Soto, César Esquivel-Chirino, Teresa Sumaya-Martínez, Tomas Fregoso-Aguilar, Jorge Mendoza-Pérez, José A. Morales-González

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

There are few reports that demonstrate the antigenotoxic potential of cranberries. Although the types of berry fruits consumed worldwide are many, this paper focuses on cranberries that are commonly consumed in Mexico (Vaccinium macrocarpon species). The purpose of the present study is to determine whether cranberry ethanolic extract (CEE) can prevent the DNA damage produced by benzo[a]pyrene (B[a]P) using an in vivo mouse peripheral blood micronucleus assay. The experimental groups were organized as follows: a negative control group (without treatment), a positive group treated with B[a]P (200 mg/kg), a group administered with 800 mg/kg of CEE, and three groups treated with B[a]P and CEE (200, 400, and 800 mg/kg) respectively. The CEE and benzo[a]pyrene were administered orally for a week, on a daily basis. During this period the body weight, the feed intake, and the determination of antigenotoxic potential were quantified. At the end of this period, we continued with the same determinations for one week more (recovery period) but anymore administration of the substances. The animals treated with B[a]P showed a weight increase after the first week of administration. The same phenomenon was observed in the lots combined with B[a]P and CEE (low and medium doses). The dose of 800 mg/kg of CEE showed similar values to the control group at the end of the treatment period. In the second part of the assay, when the substances were not administered, these experimental groups regained their normal weight. The dose of CEE (800 mg/kg) was not genotoxic nor cytotoxic. On the contrary, the B[a]P increases the frequency of micronucleated normochromatic erythrocytes (MNNE) and reduces the rate of polychromatic erythrocytes (PE) at the end of the treatment period. With respect to the combined lots, a significant decrease in the MN rate was observed from the sixth to the eighth day of treatment with the two high doses applied; the highest protection (60%) was obtained with 800 mg/kg of CEE. The same dose showed an anticytotoxic effect which corresponded to an improvement of 62.5% in relation to the animals administered with the B[a]P. In the second period, all groups reached values that have been seen in the control group animals. Our results suggest that the inhibition of clastogenicity of the cranberry ethanolic extract against B[a]P is related to the antioxidant capacity of the combination of phytochemicals present in its chemical composition.

Original languageEnglish
Pages (from-to)4435-4451
Number of pages17
JournalMolecules
Volume17
Issue number4
DOIs
StatePublished - Apr 2012

Keywords

  • Antigenotoxic effect
  • Benzo[a]pyrene
  • Cranberries
  • Micronucleus assay

Fingerprint

Dive into the research topics of 'Investigation on the protective effects of cranberry against the DNA damage induced by benzo[a]pyrene'. Together they form a unique fingerprint.

Cite this