Integral function method for determination of nonlinear harmonic distortion

Antonio Cerdeira, Miguel A. Alemán, Magali Estrada, Denis Flandre

Research output: Contribution to journalArticlepeer-review

77 Scopus citations

Abstract

The analysis of harmonic distortion is of prime importance for the analog and mixed integrated circuits. Recently we presented a new integral function method (IFM), based on a completely new principle, which allows the calculation of harmonic distortion using the DC output characteristic of devices or circuits. In this work we complement the integral function method to provide direct calculation of the following distortion figures: total harmonic distortion (THD), second harmonic distortion (HD2) and third harmonic distortion (HD3), voltage intercept points (VIP) and the intermodulation distortion (IMD). The comparison with the same distortion figures calculated by the Fourier coefficients (FC), by direct AC measurements and from FFT in simulators, indicates that results obtained by IFM give an excellent agreement in the full range of the analyzed active regions. The IFM combines simplicity and computer efficiency with accuracy and with the possibility to easily analyze the distortion when varying any of the circuit or device parameters.

Original languageEnglish
Pages (from-to)2225-2234
Number of pages10
JournalSolid-State Electronics
Volume48
Issue number12
DOIs
StatePublished - Dec 2004
Externally publishedYes

Keywords

  • Amplifiers
  • Analog circuits
  • Harmonic distortion
  • Integral function method
  • Intermodulation distortion
  • MOSFET
  • Voltage intercept points

Fingerprint

Dive into the research topics of 'Integral function method for determination of nonlinear harmonic distortion'. Together they form a unique fingerprint.

Cite this