Improvement of mechanical properties of collagen electrospun mats by halloysite nanotubes

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Collagen electrospun fibers had emerged as a promising scaffold for tissue engineering applications, nonetheless, pristine collagen fibers fail to provide of adequate mechanical properties. Therefore, here we propose the addition of halloysite nanotubes (HNT) into collagen solution for the obtention of nanofibrous mats with improved mechanical performance. Collagen was isolated and purified from tilapia skin and different concentrations of HNT (0.5, 1.0, and 2.0 %wt) were added to further spin the collagen-HNT solutions. HNT incorporation augmented the elongation at break in 800% but not in a linear manner, the smallest concentration of HNT used was the one with the better results, probably due to the agglomeration of HNT at higher concentrations as shown by SEM micrographs. Finally, the human dermal fibroblast (HDF) cell viability assay demonstrated that COL-HNT membranes were biocompatible up to a concentration of less than 1.0% and that concentrations greater than 2.0% significantly affect membrane permeability, subsequently leading to the death of the cells. Our results show that HNT can be incorporated into collagen to obtain nanofiber scaffolds, with improved mechanical properties up to 0.5% of HNT, being important in the field of tissue engineering.

Original languageEnglish
Pages (from-to)3592-3599
Number of pages8
JournalJournal of Materials Research and Technology
Volume20
DOIs
StatePublished - Sep 2022
Externally publishedYes

Keywords

  • Collagen electrospinning
  • Halloysite nanotubes
  • Mechanical properties
  • Nanocomposite mats

Fingerprint

Dive into the research topics of 'Improvement of mechanical properties of collagen electrospun mats by halloysite nanotubes'. Together they form a unique fingerprint.

Cite this