Engineering organic semiconducting solids. Multicomponent access to crystalline 3-(4-aryl-1,2,3-triazolyl)coumarins

J. E. De La Cerda-Pedro, R. Arcos-Ramos, M. Maldonado-Domínguez, S. Rojas-Lima, M. Romero-Ávila, M. P. Carreón-Castro, R. Santillan, N. Farfán, H. López-Ruiz

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Crystalline 3-(4-aryl-1,2,3-triazol-1-yl)coumarins (ATCs) were prepared from commercial materials using a four-component methodology as a key step. In the present work, a feasible and environmentally friendly route to the title compounds was developed through the reaction between salicylaldehydes, ethyl bromoacetate, phenylacetylenes and sodium azide under mild conditions, with short reaction times and a simple workup. Crystalline solids are readily accessed from the featured products via solution processing and their arrays in the solid state were elucidated through SXRD; these molecules display a periodic overlap of π-systems, which facilitates carrier transport in organic electronic devices. Semiconductor band gaps for the obtained solids were derived through plane-wave DFT and compared with reference systems known to display superior performance in organic electronics. Thus ATCs represent attractive systems for research and implementation in molecular materials, a task which will be facilitated by the concise route herein described.

Original languageEnglish
Pages (from-to)5562-5571
Number of pages10
JournalCrystEngComm
Volume18
Issue number29
DOIs
StatePublished - 2016
Externally publishedYes

Fingerprint

Dive into the research topics of 'Engineering organic semiconducting solids. Multicomponent access to crystalline 3-(4-aryl-1,2,3-triazolyl)coumarins'. Together they form a unique fingerprint.

Cite this