Effect of carbon on the density, microstructure and hardness of alloys formed by mechanical alloying

Wilbert David Wong-Ángel, Lucia Téllez-Jurado, Elizabeth Chavira-Martínez, José Federico Chávez-Alcalá, Enrique Rocha-Rangel

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

This work aimed to produce iron-based alloys containing resistant microstructures to improve the mechanical properties of the resulting alloy. The effects of both carbon content and compaction pressure on the microstructure, density and hardness of the alloys were examined. Iron-based alloys with initial carbon contents of 0.5%, 1%, 2% and 3% were produced by powder metallurgy following a process that involved ball milling elemental powders, cold pressing and sintering. The composition, density, microstructure, porosity, hardness and ductility of the alloys depended on both compaction pressure and carbon content. As the carbon content increased, the amount of the resistant microstructure bainite in the alloys also increased, as did their hardness. In contrast, the density and ductility of the alloys decreased with increasing carbon content. This study shows that formation of the resistant microstructure bainite in alloys fabricated by powder metallurgy is influenced by both the initial carbon content of the alloy and compaction pressure during cold pressing.

Original languageEnglish
Pages (from-to)605-611
Number of pages7
JournalMaterials and Design
Volume60
DOIs
StatePublished - Aug 2014

Keywords

  • Density
  • Hardness
  • Mechanical alloying
  • Pressing
  • Sintering

Fingerprint

Dive into the research topics of 'Effect of carbon on the density, microstructure and hardness of alloys formed by mechanical alloying'. Together they form a unique fingerprint.

Cite this