Composite active disturbance rejection robust control for a prototype of an active damping artificial ankle prosthesis

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

The problem of robust control applied to adjust the configuration of an ankle prosthesis based on disturbance estimation has been addressed in this study. Active disturbance rejection control was the paradigm used for controlling the robotic prosthesis by means of a direct active estimation. Based on this active estimation, the robust controller implemented the disturbance cancellation providing a fast converge to the origin of the tracking error. The uncertainties affecting the prosthesis dynamics were identified by a high-order extended state high gain observer. This identification was used to force the tracking between the actual position and force needed in the ankle prosthesis and some reference values obtained by a biomechanical gait cycle analysis. Therefore, the estimated states were used to implement a robust output feedback controller that was effective to reject actively the perturbations. This rejection implemented within the controller forced the trajectory tracking to a small vicinity of the origin. A strategy based on composite Lyapunov function served to prove that tracking problem for the prosthesis was successfully solved despite the switching nature of the gait cycle. The controller was implemented in numerical simulations for showing the convergence of the tracking error. The convergence of this tracking error to the region around the origin was obtained within the first second of simulation.

Original languageEnglish
Pages (from-to)908-923
Number of pages16
JournalAsian Journal of Control
Volume22
Issue number2
DOIs
StatePublished - 1 Mar 2020

Keywords

  • active disturbance rejection
  • extended state observers
  • hybrid systems
  • prosthesis
  • robotics
  • robust control

Fingerprint

Dive into the research topics of 'Composite active disturbance rejection robust control for a prototype of an active damping artificial ankle prosthesis'. Together they form a unique fingerprint.

Cite this