Color image self-recovery and tampering detection scheme based on fragile watermarking with high recovery capability

Rogelio Reyes-Reyes, Clara Cruz-Ramos, Volodymyr Ponomaryov, Beatriz P. Garcia-Salgado, Javier Molina-Garcia

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

In this paper, a fragile watermarking scheme for color image authentication and selfrecovery with high tampering rates is proposed. The original image is sub-sampled and divided into non-overlapping blocks, where a watermark used for recovery purposes is generated for each one of them. Additionally, for each recovery watermark, the bitwise exclusive OR (XOR) operation is applied to obtain a single bit for the block authentication procedure. The embedding and extraction process can be implemented in three variants (1-LSB, 2-LSB or 3-LSB) to solve the tampering coincidence problem (TCP). Three, six or nine copies of the generated watermarks can be embedded according to the variant process. Additionally, the embedding stage is implemented in a bit adjustment phase, increasing the watermarked image quality. A particular procedure is applied during a post-processing step to detect the regions affected by the TCP in each recovery watermark, where a single faithful image used for recovery is generated. In addition, we involve an inpainting algorithm to fill the blocks that have been tampered with, significantly increasing the recovery image quality. Simulation results show that the proposed framework demonstrates higher quality for the watermarked images and an efficient ability to reconstruct tampered image regions with extremely high rates (up to 90%). The novel self-recovery scheme has confirmed superior performance in reconstructing altered image regions in terms of objective criteria values and subjective visual perception via the human visual system against other state-of-the-art approaches.

Original languageEnglish
Article number3187
JournalApplied Sciences (Switzerland)
Volume11
Issue number7
DOIs
StatePublished - 1 Apr 2021

Keywords

  • Fragile watermarking
  • Image authentication
  • Image self-recovery
  • Image tampering detection
  • Tampering coincidence problem

Fingerprint

Dive into the research topics of 'Color image self-recovery and tampering detection scheme based on fragile watermarking with high recovery capability'. Together they form a unique fingerprint.

Cite this