Antiamoebic and toxicity studies of a carbamic acid derivative and its therapeutic effect in a hamster model of hepatic amoebiasis

Cynthia Ordaz-Pichardo, Mineko Shibayama, Saúl Villa-Treviño, Myriam Arriaga-Alba, Enrique Angeles, Mireya De La Garza

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Amoebiasis is an important public health problem in developing countries. Entamoeba histolytica, the causative agent of amoebiasis, may develop resistance to nitroimidazoles, a group of drugs considered to be the most effective against this parasitic disease. Therefore, research on new drugs for the treatment of this common infection still constitutes an important therapeutic demand. In the present study we determined the effects of a carbamate derivative, ethyl 4-chlorophenylcarbamate (C4), on trophozoites of E. histolytica strain HM-1: IMSS. C4 was subject to various toxicity tests, including the determination of mutagenicity for bacterial DNA and changes in the enzymatic activities of eukaryotic cells. Genotoxicity studies were performed by the mutagenicity Ames test (plate incorporation and preincubation methods) with Salmonella enterica serovar Typhimurium, with or without metabolic activation produced by the S9 fraction of rat liver. C4 toxicity studies were performed by measuring enzymatic activity in eukaryotic cells by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-formazan test with Fischer 344 rat hepatocytes. C4 did not induce either frame-shift mutations in S. enterica serovar Typhimurium TA97 or TA98 or base pair substitutions in strains TA100 and TA102. The compound was not toxic for cultured rat hepatic cells. Trophozoites treated with 100 μg of C4 per ml were inhibited 97.88% at 48 h of culture; moreover, damage to the amoebae was also confirmed by electron microscopy. The antiamoebic activity of C4 was evaluated by using an in vivo model of amoebic liver abscess in hamsters. Doses of 75 and 100 mg/100 g of body weight reduced the extent of the amoebic liver abscess by 84 and 94%, respectively. These results justify further studies to clearly validate whether C4 is a new suitable antiamoebic drug.

Original languageEnglish
Pages (from-to)1160-1168
Number of pages9
JournalAntimicrobial Agents and Chemotherapy
Volume49
Issue number3
DOIs
StatePublished - Mar 2005
Externally publishedYes

Fingerprint

Dive into the research topics of 'Antiamoebic and toxicity studies of a carbamic acid derivative and its therapeutic effect in a hamster model of hepatic amoebiasis'. Together they form a unique fingerprint.

Cite this