Anti-epileptic activity, toxicity and teratogenicity in CD1 mice of a novel valproic acid arylamide derivative, N-(2-hydroxyphenyl)-2-propylpentanamide

José Melesio Cristóbal-Luna, José Correa-Basurto, Humberto L. Mendoza-Figueroa, Germán Chamorro-Cevallos

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


© 2020 Elsevier Inc. N-(2-hydroxyphenyl)-2-propylpentamide (HO-AAVPA) is a novel arylamide derivative of valproic acid (VPA) designed in silico, with better antioxidant and antiproliferative effect on cancer cell lines than VPA. This study was aimed to evaluate the anticonvulsant activity, the toxicity and teratogenicity produced in HO-AAVPA-treated CD1 mice using VPA as positive control. With the maximal electroshock (MES)- and pentylenetetrazole (PTZ)-induced seizure models, HO-AAVPA reduced the time of hind limb extension, stupor and recovery, the number of clonic and tonic seizures and the mortality rate in a dose-dependent manner, obtaining an ED50 of 370 and 348 mg/kg for MES and PTZ, respectively. On the rotarod test, mice administered with 600 mg/kg HO-AAVPA manifested reduced locomotor activity (2.78%); while HO-AAVPA at 300 mg/kg and VPA at 500 mg/kg gave a similar outcome (∼60%). The LD50 of 936.80 mg/kg herein found for HO-AAVPA reflects moderate toxicity. Concerning teratogenicity, the administration of HO-AAVPA to pregnant females at 300 and 600 mg/kg on gestation day (GD) 8.5 generated less visceral and skeletal alterations in the fetuses, as well as, minor rate of modifications in the expression pattern of the neuronal marker Tuj1 and endothelial marker PECAM1 in embryos, that those induced by VPA administration. Altered embryonic development occurred with less frequency and severity with HO-AAVPA at 600 mg/kg than VPA at 500 mg/kg. In conclusion, the protective effect against convulsions provided by HO-AAVPA was comparable to that of VPA in the MES and PZT seizure models, showed lower toxicity and less damage to embryonic and fetal development.
Original languageAmerican English
JournalToxicology and Applied Pharmacology
StatePublished - 15 Jul 2020


Dive into the research topics of 'Anti-epileptic activity, toxicity and teratogenicity in CD1 mice of a novel valproic acid arylamide derivative, N-(2-hydroxyphenyl)-2-propylpentanamide'. Together they form a unique fingerprint.

Cite this